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ABSTRACT

Accurate vegetation models can produce further insights into the complex inter-
action between vegetation activity and ecosystem processes. Previous research
has established that long-term trends and short-term variability of temperature
and precipitation affect vegetation activity. Motivated by the recent success of
Transformer-based Deep Learning models for medium-range weather forecast-
ing, we adapt the publicly available pre-trained FourCastNet to model vegetation
activity while accounting for the short-term dynamics of climate variability. We
investigate how the learned global representation of the atmosphere’s state can
be transferred to model the normalized difference vegetation index (NDVI). Our
model globally estimates vegetation activity at a resolution of 0.25◦ while relying
only on meteorological data. We demonstrate that leveraging pre-trained weather
models improves the NDVI estimates compared to learning an NDVI model from
scratch. Additionally, we compare our results to other recent data-driven NDVI
modeling approaches from machine learning and ecology literature. We further
provide experimental evidence on how much data and training time is necessary
to turn FourCastNet into an effective vegetation model. Code and models will be
made available upon publication.

1 INTRODUCTION

Environmental changes affect the dynamics of terrestrial vegetation, which is involved in controlling
water, energy and CO2 fluxes (Richardson et al., 2013), and is thus crucial for providing ecosystem
services such as food, fiber and fuel (Piao et al., 2020). Hence, a profound understanding of the com-
plex interplay of climate system variables and vegetation changes is desirable to achieve sustainable
ecological management.

Previous studies have shown that observed changes in vegetation can be attributed to both long-term
and short-term changes in temperature and precipitation, i.e., climate change and climate variability
(Burrell et al., 2020; Chen et al., 2019; Higgins et al., 2023; Liu et al., 2022; Seddon et al., 2016;
Zhu et al., 2016). While the spatial arrangement of vegetation on a large scale is primarily dic-
tated by climatic factors, the interplay between climate variability and the short-term dynamics of
vegetation introduces a higher level of complexity (Papagiannopoulou et al., 2017; Pelletier et al.,
2015). Different Machine Learning (ML) approaches have been suggested to capture the complex
nonlinear dynamics of those short-term dynamics. However, the employed models are either limited
to a specific region (Robin et al., 2022; Smith et al., 2023) or use a coarse global resolution with
one pixel covering at least 0.5◦(≈ 55 km) (Chen et al., 2021; Kraft et al., 2019). While there are
statistical approaches that globally quantify the effect of climate variability on vegetation change
on a finer spatial resolution up to 0.083◦, they only consider meteorological data on a coarse time
scale, e.g., one data point per month (Burrell et al., 2020; Seddon et al., 2016). Nonetheless, the
availability of long-term weather reanalysis datasets such as ERA5 (Hersbach et al., 2020), which
comprises hourly high-resolution measurements of 0.25◦ (≈ 27 km) per pixel, provide the opportu-
nity to model dependencies of short-term changes in meteorological variables on vegetation activity
on a fine spatial and temporal resolution.
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Recently, Deep Learning (DL) models have demonstrated the capability to efficiently parse and
exploit those vast amounts of meteorological data in the context of medium-range weather forecast-
ing. Architectural improvements and increased compute availability have led to DL-based weather
models that now perform on par with commonly used numerical weather systems (Bi et al., 2023;
Lam et al., 2023; Pathak et al., 2022). These approaches learn a spatial representation of the atmo-
sphere’s state by forecasting future atmospheric states. Previous studies have already shown that
their trained atmospheric models can be finetuned to effectively solve other climate-related tasks
such as statistical downscaling and climate projections (Lessig et al., 2023; Nguyen et al., 2023).

Based on these advances, this work investigates how the pre-trained weather forecasting model Four-
CastNet (FCN) (Pathak et al., 2022) can be adapted for globally modeling the normalized difference
vegetation index (NDVI) (Tucker & Sellers, 1986; Vermote, 2019), a commonly used index for ap-
proximating vegetation activity (Ferchichi et al., 2022). We outline an approach building upon a
state-of-the-art DL architecture for processing spatio-temporal data, which enables global modeling
of the NDVI at a high spatial (0.25◦) and temporal (daily) resolution with a single model. We inves-
tigate how to utilize FCN’s atmospheric knowledge by comparing a finetuned model versus a model
trained from scratch. Additionally, we analyze the training time and data needed to make FCN an
effective vegetation model in three ablation studies.

2 PRE-TRAINED WEATHER MODELS FOR VEGETATION MODELING

Dataset For our study, we use daily global weather data from ERA5 (Hersbach et al., 2020) at
a resolution of 0.25◦ (720 x 1440 pixel) from the years 1982 to 2013. We use the same 20 pre-
dictor variables as Pathak et al. (2022): zonal and meridional wind velocity (10m above ground, at
1000 hPa, 850 hPa and 500 hPa), temperature (2m above ground, at 850 hPa and 500 hPa), geopo-
tential (at 1000 hPa, 850 hPa, 500 hPa, and 50 hPa), relative humidity (at 850 hPa and 500 hPa)
surface pressure, mean sea level pressure, and total column water vapor. One sample has the dimen-
sionality (20 x 720 x 1440). The NDVI data (Vermote, 2019) is our target variable, regridded linearly
from originally 0.083◦ to ERA5’s 0.25◦ resolution. This vegetation index is computed from satel-
lite observations as the normalized difference between the spectral reflectances in the near-infrared
and red wavebands (Tucker & Sellers, 1986). It ranges from −1 to 1. Negative values indicate
water, positive values around zero indicate barren land, and values close to one indicate dense veg-
etation. NDVI data after 2013 was not considered for this study, as our analysis (cf. Fig. 5) shows a
noticeable data shift beginning in 2014

Method To investigate the applicability of pre-trained weather models for globally modelling veg-
etation activity, we use the FCN Deep Learning model, whose pre-trained weights are publicly avail-
able (Pathak et al., 2023). FCN is a comparatively lightweight weather model (cf. Bi et al. (2023);
Chen et al. (2023); Lessig et al. (2023); Nguyen et al. (2023)) with a total of 73million parameters
distributed over 8 Transformer-like (Vaswani et al., 2017) encoder blocks, see Fig. 3 for an architec-
tural overview. Each of these blocks has 5million parameters and uses an Adaptive Fourier Neural
Operator layer (Guibas et al., 2021) replacing the attention mechanism (Bahdanau et al., 2015).

We adopt the FCN to the NDVI modeling task by replacing the original weather prediction head
with a randomly initialized fully-connected layer with the tanh activation function. For modeling
the effects of short-term climate variability on vegetation activity, FCN is trained on modeling the
NDVI for the same timestep as the daily input weather variables. For finetuning, we initialize the
original FCN model with the pre-trained weights, while for training FCN from scratch, we freshly
initialize all model weights.

Comparison models As a simple baseline, we designed and hyperparameter-optimized a convo-
lutional neural network (CNN) with the details given in Appendix C. We further compare us with
two recent data-driven models from ecology literature:

The first approach is a global long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997)
model by Kraft et al. (2019), trained on single-location time-series of meteorological variables at a
15 d temporal resolution and a 0.5◦ spatial resolution, half of our resolution, with globally shared
weights. This approach reflects the so-called memory effect of vegetation, i.e., that preceding veg-
etation states can have longer-lasting effects on vegetation activity (De Keersmaecker et al., 2015).
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Table 1: Test year results. Left: Latitude weighted global evaluation of the finetuned FCN, FCN
trained from scratch, our baseline CNN and the LSTM (Kraft et al., 2019). Right: Unweighted
averages for local evaluation on 100 locations for comparison with Higgins et al. (2023). †: local
model with global weight-sharing with different variables at 0.5◦ resolution. ‡: local models with
different variables. See Section 2 and Appendix C for details.

Model FCN finetune FCN scratch CNN LSTM† FCN finetune SSM‡

Evaluation global, 15-daily local, 7-daily

RMSE 0.0403 0.0512 0.0431 0.017 0.0547 0.0548
R2 0.6331 0.4977 0.6061 0.904 0.5151 0.4038

The second data-driven approach trains separate local, weekly state space model (SSM) on 100 loca-
tions across the globe, guided by equations describing the interplay between the used climate-forcing
data (Higgins et al., 2023).

Experimental setup The dataset is split into a training (1982-2010), validation (2011-2012), and
test (2013) set. Training details for FCN can be found in Appendix B. We perform three individual
ablation studies:. In study I, we vary the number of finetuning epochs between 1 to 200 epochs.
The number of frozen parameters during finetuning is varied in study II, where we freeze between
one and eight of FCN’s Transformer blocks in ascending order. Lastly, in study III, the number of
finetuning data is modified by selecting a random 10% to 90% subset of the training years.

Evaluation We evaluate all models by computing the root mean squared error (RMSE) and R2

score on the test set. The R2 score measures the goodness of fit of the model proportional to the
temporal variation of the target NDVI values at a given pixel and ranges from 1 (best) to −∞. For
global evaluation in comparison with the LSTM results reported by Kraft et al. (2019), we match
their evaluation scheme, thereby removing the same noisy pixels and accounting for varying pixel
areas through latitude-weighting (cf. Appendix D). Also, our models’ outputs and target values are
aggregated to 15-day averages to match their temporal resolution. For local evaluation in comparison
with the SSMs results provided by Higgins et al. (2023), we evaluate our model locally at the same
100 locations. At these locations, FCN model outputs and target values are aggregated to 7-day
averages as in Higgins et al. (2023), while evaluating the SSMs exclusively on the 2013 test year.

3 RESULTS AND DISCUSSION

Finetuning the learned atmospheric representation of FCN for vegetation modeling outperforms
an NDVI model trained from scratch, as Table 1 shows. Here, the scratch model reaches an R2

of 0.4977 (RMSE: 0.0512). Finetuning the same model strongly improves NDVI modeling per-
formance up to an R2 of 0.6331, which is higher than the strong hyperparameter-optimized CNN

Figure 1: Results for ablation studies I & II. Left: varying number of finetuning epochs. Right:
Varying amount of training data. Results reported in Table 1 are highlighted in both plots.
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baseline with an R2 of 0.6061 (RMSE: 0.0431). For the FCN, a parameter search was not considered
in this study but could enhance the global ecosystem model further.

Figure 2: Results for ablation study III: varying
number of frozen Transformer blocks during fine-
tuning. Runtimes are averaged over five epochs.

To contextualise our performance, the pixel-
wise LSTM model by Kraft et al. (2019)
reaches both the highest R2 of 0.904 and the
lowest RMSE of 0.017 but was trained at both
lower temporal and spatial resolution than our
approach. Also, as described in Section 2,
the time-series approach uses past meteorolog-
ical data which allows it to model the so-called
memory effect of vegetation. Considering this
memory effect seems to be important for mod-
eling the NDVI from weather data and incor-
porating the respective information into our
model might close the observed performance
gap compared to the LSTM model.

The average performance on the 100 locations
selected by Higgins et al. (2023) shows that our
finetuned FCN reaches a 28% higher R2 score
than the SSMs. A closer analysis of these loca-
tions (see Appendix Table 2) shows that a single global model can generally learn biome-specific
vegetation patterns, but performance is higher in forested regions than in regions with mainly barren
land (cf. Appendix Fig. 4). Here, low- to mid-latitude ranges in the Northern Hemisphere are gen-
erally well-modelled, while the performance in the Southern Hemisphere and high-latitude regions
is worse. This diminished performance may stem from limited data availability towards the poles.

In ablation study I, performance most strongly rises until 80 finetuning epochs, as shown in Fig. 1a.
Afterwards, performance stagnates at around an R2 of 0.62, as more finetuning epochs do not lead
to further improvements.

The results for study II in Fig. 1b show that finetuning FCN on more data improves modeling per-
formance. The largest jump occurs when doubling the amount of finetuning data from 10% to 20%.
Beyond, further increases still lead to performance improvements albeit at a slower rate. Extrapo-
lating Fig. 1b, this trend suggests that additional data may still enhance performance.

Freezing up to three Transformer blocks in the FCN model results in only minor performance loss, as
the results for study III in Fig. 2 show. When more blocks are frozen, the R2 scores can drop below
the CNN baseline. However, more frozen blocks reduce the average per-epoch runtime. It drops
from 355 s for the full model to 195 s when finetuning only the newly added vegetation-modeling
head. These results suggest that selectively freezing a moderate number of Transformer blocks can
provide a speedup compared to training the full model, while the performance decreases marginally.

4 CONCLUSION

In this work, we investigated how a pre-trained weather model can be adapted for globally modeling
vegetation activity as measured by the normalized difference vegetation index. We finetuned Four-
CastNet to model the NDVI from 20 meteorological variables from the ERA5 dataset and reach a
globally averaged test set R2 of 0.6331. This indicates that a weather model finetuned for modeling
vegetation activity from high temporal and spatial resolution meteorological data can capture sub-
stantial amounts of the NDVI’s variability. Our results further show that training from scratch per-
forms worse than finetuning a pre-trained weather model. This suggests that during its pre-training
phase, the weather model acquires structural knowledge about the atmosphere, which is beneficial
for vegetation modeling and which probably is not attained when training from scratch.

While meteorological data partially reflects the impact of climate variability on vegetation, other
factors like atmospheric carbon dioxide, soil-related properties and the so-called memory effect are
known to be part of the complex interplay between environmental driving forces and vegetation
activity De Keersmaecker et al. (2015); Piao et al. (2020). Hence, incorporating further relevant
variables into the model while preserving the information in the pre-trained weather models about
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atmospheric dynamics is an area of future work. Lastly, we want to highlight that explainable
artificial intelligence techniques allow examining attributions of the model’s input to its output, such
that Deep Learning models can contribute to enhancing our understanding of how globally changing
environmental factors affect local ecosystems.
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Mao, Yaozhong Pan, Shushi Peng, Josep Peñuelas, Benjamin Poulter, Thomas A. M. Pugh, Ben-
jamin D. Stocker, Nicolas Viovy, Xuhui Wang, Yingping Wang, Zhiqiang Xiao, Hui Yang, Sönke
Zaehle, and Ning Zeng. Greening of the Earth and its drivers. Nature Climate Change, 6(8):
791–795, August 2016. ISSN 1758-6798. doi: 10.1038/nclimate3004.

7

https://www.ncei.noaa.gov/data/land-normalized-difference-vegetation-index/access/
https://www.ncei.noaa.gov/data/land-normalized-difference-vegetation-index/access/


Published as a workshop paper at ”Tackling Climate Change with Machine Learning”, ICLR 2024

A EXTENDED RESULTS AND SUPPLEMENTARY FIGURES
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Figure 3: Overview of the used architecture based on the FourCastNet model Pathak et al. (2022).
We initialize the model from pre-trained weights Pathak et al. (2023) and replace the weather-
specific head with a linear head for modelling the normalized difference vegetation index (NDVI).

Figure 4: Global visualization of the R2 score on the entire test set. R2 scores below 0 are clipped to
0 for ease of visualization. Performance is the strongest for continental Europe and North America
and decreases towards higher latitude regions.
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Table 2: Extended results for local evaluation. Unweighted average of RMSE and R2 score per
biome of the 100 location from Higgins et al. (2023). The finetuned model improves the averaged
R2 score across all biomes compared to the SSMs except for boreal forests and tundra. Our global
modeling approach thus captures biome-specific NDVI dynamics.

RMSE R2 Samples
Biome FCN SSM FCN SSM

Boreal forest 0.0656 0.0834 0.7244 0.8321 16
Grassland 0.0416 0.0449 0.4716 0.4484 14
Mediterranean-type 0.0364 0.0393 0.1921 −0.6008 5
Tropical forest 0.0789 0.0508 0.1405 −0.0515 16
Savanna 0.0512 0.0516 0.7151 0.6628 18
Shrubland 0.0478 0.0445 0.3021 0.1966 16
Temperate forest 0.0598 0.0693 0.7726 0.5247 12
Tundra 0.0423 0.0600 0.8312 0.9149 9

Figure 5: Distribution of the normalized difference vegetation index (NDVI) data from 1982 to
2023. NDVI data was only used until 2013 due to the noticeable data shift afterwards.

B FOURCASTNET TRAINING DETAILS

We train/finetune the FCN with the Adam optimizer (Kingma & Ba, 2014) and a learning rate of
0.0001 with cosine annealing (Loshchilov & Hutter, 2016) for 80 epochs (except when varying the
number of training epochs in ablation study I, see Section 2) using an l2 loss. Using a binary mask,
the loss is only computed for locations with valid NDVI observations. The weights of the model
with the lowest validation loss are kept. We trained our models using a single node equipped with 8
NVIDIA A100 40GB GPUs.

C BASELINE AND COMPARISON MODELS DETAILS

Table 3: Hyperparameter search ranges for the baseline CNN network.

Hyperparameter Search space Step size

n layers 3 to 8 1
learning rate 1e−5 to 1e−5 log uniform

epochs 50 to 100 10
n filters 16 to 512 16

kernel size 3 to 7 2
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We use a convolutional neural network (CNN) as a baseline model. The CNN’s hyperparameters
were optimized over 60 trials on the validation set with the search ranges given in Table 3. The
hyperparameter-optimized CNN consists of six convolution layers with 64, 16, 512, 128, 512, 128
kernels, respectively. The used kernel sizes are 3, 5, 5, 5, 3, 5, each with a stride of 1. The CNN’s
last layer is a fully connected dense layer with 64 neurons, whose output is reshaped to the target
resolution of 720 x 1440. The CNN was trained with a learning rate of 0.00006 for 80 epochs.

D EVALUATION SETTING

Global evaluation For global evaluation in comparison to LSTM models by Kraft et al. (2019),
we compute 15-days averages of our model output and target values to match their temporal resolu-
tion. To provide a fair comparison to the reported results of Kraft et al. (2019), we replicated their
evaluation setting to the best of our knowledge, since their code is not publicly available. To remove
noisy pixels as defined by Kraft et al. (2019), we remove pixels with 50% missing data in the time
dimension, pixels with less than 20% land mass, and barren-land pixels, which together removes
coastal, high-latitude and desert regions. Further, to account for the varying size of pixels across
different latitudes as Kraft et al. (2019), we use latitude-weighted RMSE and R2 scores, with the
latitude weighting factors w1, ..., wI for I evaluated pixels given by

wi =
cos(lat(i))

1
Nlat

∑Nlat
j=1 cos(lat(j))

∀i ∈ {1, ..., I} .

We assume that our latitude-weighting is identical to their employed area weighting scheme, i.e.
given the latitude weights w1, ..., wI , the corresponding pixel areas A1, ...,AI and their total area A

Ai

A
=

wi∑I
j=1 wj

∀i ∈ {1, ..., I} .

With this assumption, we can show that the reported biome-weighted RMSEglobal for the biomes
A1, ..., AB in Kraft et al. (2019) is identical to our latitude-weighted RMSE:

RMSE =
1∑I

j=1 wj

I∑
i=1

wi · RMSEi

=
1

A

I∑
i=1

Ai · RMSEi

=
1

A

B∑
b=1

∑
k∈Ib

Ab
k · RMSEb

k

=
1

A

B∑
b=1

Ab · (
∑
k∈Ib

Ab
k

Ab
· RMSEb

k)

=
1

A

B∑
b=1

Ab · RMSEb

= RMSEglobal

The above equations also hold for the biome-weighted R2
global in Kraft et al. (2019) and our latitude-

weighted R2 score. However, we do not perform the same 10-fold spatio-temporal cross-validation
due to the long training time of our model. Additionally, note that the LSTM model is evaluated
at a coarser resolution of 0.5◦than our FCN model (0.25◦) and was trained on a different set of
variables. Those are six dynamic meteorological variables and 21 static variables including water
capacity, water table depth and land cover fractions.

Local evaluation For local evaluation in comparison to the state space models (SSM) results pro-
vided by Higgins et al. (2023), we average our model output and prediction at the same 100 locations

10



Published as a workshop paper at ”Tackling Climate Change with Machine Learning”, ICLR 2024

to weekly resolution. We then compute unweighted average RMSE and R2 scores across these lo-
cations. Note that an individual SSM is trained per location, using location-specific air temperature
2m above the surface, soil temperature, soil moisture, surface solar radiation, and atmospheric car-
bon dioxide at 0.083◦ spatial resolution as climate-forcing data. The target data is the NDVI at a
weekly temporal resolution.

E DATA SCALING IN ECOSYSTEM MODELING

The results for ablation study II, visualized in Fig. 1b, show that over the evaluated range of number
of finetuning data, performance increases as more data is used. A similar behaviour was observed for
earth observation data by Smith et al. (2023), who trained a pixel-wise autoregressive Transformer
model (Radford et al., 2019) on satellite-derived earth observation data. They noted that scaling
their training data also scales model performance. In lieu of a scaling “law” that applies to earth
observation data, they assume their model performance to follow the scaling law observed for large
language models:

N ∼ 20 D,

where N is the number of model parameters and D is the number of training tokens (Hoffmann
et al., 2022). In the following, we assume that this tendency also applies to our vegetation-modeling
approach.

Our training dataset contains 29 training years (1982 to 2010) with 365 days per years, leading to
29 ∗ 365 = 10585 training samples. One sample has dimensionality 720 x 1440, and the patch
size used to tokenize this image-like input is 8. For one training sample, this leads to 720/8 = 90
tokens covering the latitudinal direction, and 1440/8 = 180 tokens for the longitudinal direction,
or 90 ∗ 180 = 16200 total tokens for one sample. Over the entire training data, we thus have
16200 ∗ 10585 = 171477000 tokens in total.

The FourCastNet we use has 73million parameters. Assuming that the mentioned scaling law ap-
plies, we would thus need to train FCN on 20 ∗ 73million = 1.46 billion tokens for optimal per-
formance1 However, this calculation assumes the validity of the large language model scaling law.
For autoregressive, image-like data-generating models, different data-scaling might be better suited,
such as the ones proposed by Henighan et al. (2020). Applying these laws to ecosystem models is
thus an open research direction.

1Or, alternatively, we should scale down the model to 171477000 total tokens / 20 = 8.573.850 parame-
ters, which would roughly be a two-Transformer block model. The observed results in Fig. 2 currently indicate
that this configuration does not show the best performance, at least for a setting where these blocks are the only
ones being trained, and further blocks – and thus parameters – exist but are frozen.
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